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Bandwidth Optimization by Dielectric Loading

SHALOM HALEVY, SHALOM RAZ, axp HAIM CORY

Abstract—The known theory of dielectrically loaded rectangular wave-
guides is combined with appropriate optimization procedures to yield
optimal bandwidth design. The minimal acceptable power handling capac-
ity and/or the maximal allowed losses are used as constraints, Alterna-
tively, power handling capacity or losses may be considered as the desired
optimization targets. The numerical determination of the relevant cutoff
frequencies is carried out by the efficient mode-matching technique as well
as the more generally applicable moment solution. Alternative search
algorithms are used and compared. Results of the optimization process are
given a simple physical interpretation.

I. INTRODUCTION

'HE DIELECTRIC loaded waveguide has long been

recognized as an attractive propagation medium,
possessing desirable features such as substantially in-
creased bandwidth and power handling capacity. The
associated propagation features, particularly for stratified
loading, have been thoroughly investigated and are well
known [1]-4].

A primary objective of this paper is to combine the
known theory of stratified loaded guides and the
associated numerical capability with appropriate optimi-
zation schemes. We present a procedure yielding optimal
bandwidth design with minimal power handling capacity
and/or maximal allowed losses as constraints. Alterna-
tively, power handling capacity or losses may be selected
as the desired optimization targets with, for example, the
bandwidth as a constraint.

The useful frequency band is, in principle, given by
wy < w<w,, where w, and w, denote the cutoff frequen-
cies of the first (dominant) mode (LSE,, in the configura-
tion of Fig. 1), and the second (subdominant) mode
(LSE,,, LSE,;, or LSM,, depending upon the waveguide
and loading parameters in the configuration of Fig. 1 [3]).

The numerical determination of the relevant cutoff
frequencies and field distribution is carried out by both
the classical and efficient (whenever applicable) mode-
matching technique [2] and by the more general moment
method [5]. The optimization sequence was carried out by
two alternative search algorithms suggested by [6] and {7],
of which the first has consistently been found to be more
efficient.

The bandwidth extension mechanisms are discussed
from the point of view of perturbation theory in Section
II. Perturbation arguments help clarify some of the basic
trends, e.g., the fact that maximal influence on the cutoff
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Fig. 1. Rectangular waveguide loaded with M dielectric slabs.

frequencies is obtained by dielectric loading of regions of
maximal (modal) electric fields while modes characterized
by vanishing electric fields in the loaded region remain
essentially unaffected.

The analytical and numerical aspects are described in
Section III. No difficulties are encountered in the applica-
tion of the mode-matching technique. A convergence dif-
ficulty arose in applying the moment solution to LSM
modes. This difficulty, traceable to the appearance of
discontinuities in the modal fields, was resolved by an
appropriate choice of hybrid basis.

The specific configuration of a single centrally situated
slab and its unconstraint optimization is discussed in
Section IV-A. In Section IV-B, the authors also address
the asymmetrical and multi-slab configurations (Fig. 1)
from the viewpoint of the role that the added parameters
(degrees of freedom) can play in the optimization process.
Section IV-C deals with the problem and conclusions of
constraint optimization. For reasons exhibited in Section
IV-B, only the symmetric single-slab configuration is dis-
cussed in this context.

II. THEORETICAL CONSIDERATIONS

Let us consider an infinitely long dielectrically loaded
rectangular waveguide having perfectly conducting walls.
It is assumed that the guide’s width « in the x direction, is
larger than or equal to its height b in the y direction. It is
further assumed that the relative permittivity € is x depen-
dent only, and that the relative permeability u=1. The
electromagnetic (EM) fields propagating in this guide
could be classified into LSE modes (£,=0) and LSM
modes (H, =0), which constitute a complete set.

0018-9480/78 /0600-0406$00.75 © 1978 IEEE
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A. The LSE and LSM Modes

The electric and magnetic fields of the ith LSE mode
are derivable from a Hertz magnetic vector potential

given by [2], [8]
I]:hl= _x¢hi(x) COS ﬁb.?z m=0’ 1,2’.. .

(1)

exp (—jB,2),

¢, (x) satisfies the following differential equation:

) (1Y 4 52w = im0 @)

and boundary conditions

¢y (0) = ¢, (a) =0. 3)
Similar considerations apply for the LSM modes [2], [8].

B. Mode Classification and Bandwidth Definition

There is a double infinity of solutions for each mode
type, to be denoted as LSE,,, and LSM,,,,. The index m
refers to the y dependence of the potential, while the
index n is related to the x domain eigenfunction having
the eigenvalue w, ,:(w, , >, ,_;). These eigenvalues, i.e.,
the cutoff frequencies, are found by setting S8=0 in the
differential equations of the modes, and solving the result-
ing equations by the numerical methods described in the
next paragraph. LSE; will retain its dominant mode role
throughout. From the properties of the Sturm-Liouville
operator [9], it appears that the eigenvalues of the
LSE, ,(LSM,,,,) modes are lower than the eigenvalues of
the LSE,,(LSM,,,) modes, if m=m’ and n<n’, or if
n=n" and m<m’, or if m<m’ and n <n’. Therefore, the
modes “competing” for second place are LSEy, LSE;,
and LSM,,, and only these modes need to be considered
in the bandwidth optimization problem. The second-place
mode will be referred to as the “subdominant mode.”

We shall define the cutoff frequency ratio (CFR) as
follows:

CFR=uw,/w, @

where w, is the cutoff frequency of the dominant (LSE,)
mode, while w, is the cutoff frequency of any other mode.
The CFR of the subdominant mode will be termed band-
width (BW).
Weg
BW= o (5)
Alternative bandwidth definitions are possible, but the
above definition is the simplest and most usual one. It is
noted that for a waveguide completely filled with a homo-
geneous dielectric, the subdominant mode is the
LSEy,(TE,,) in the range 0<b/a<1/2, with BW=2,
while in the range 1/2<b/a <1, the subdominant mode
is the LSM,,(TE,,) with BW 2.

C. Bandwidth Improvement and the Perturbation Method

The tendencies of bandwidth improvement can be
studied by performing a small perturbation in the fully
loaded guide’s geometry and/or its loading, and calculat-
ing the results bandwidth. In the 0<b/a<1/2 range, we
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have either to lower the cutoff frequency of the LSE,
mode or to raise the cutoff frequency of the LSE,, mode.
Clearly, the perturbation method could only hint at the
initial bandwidth response to the guide’s parameters varia-
tion.

Let us consider an infinitely long cylindrical waveguide
of cross section § with perfectly conducting walls, com-
pletely filled with a dielectric of relative permittivity e and
permeability u, and let (Eq, Hy) denote the presumedly
known fields at cutoff (w,).

If we perform a perturbation AS in the waveguide’s
cross section, we shall obtain the following approximate
expression for the relative bandwidth [10]:

o fA . f (nHy Hg — eEy E3)dS

e j;f(uﬁo-173‘+eE_0-Eg‘)dS

where w, is the cutoff frequency in the perturbed config-
uration. Therefore, an inward perturbation will decrease
or increase the cutoff frequency if it is made at a location
where the electric or the magnetic fields, respectively, are
highest. An application of this effect for increasing the
bandwidth could be found in ridge waveguides.

If the perturbation is performed in the dielectric param-
eters, the following approximate expression for the rela-
tive bandwidth [10] will be obtained:

f f (MeEy Ef +Apfly Hy)dS
e — ()
e fs f (eEy Eg+pHy Hy)dS

where Ae and Ap are local changes in the relative permit-
tivity and permeability, respectively. Therefore, an in-
crease in € or p will decrease the cutoff frequency. An
application of this effect for increasing the bandwidth has
been proposed in [1] and [3]. Let us consider a centrally
loaded waveguide with a thin dielectric slab of width ¢
(c<a) and permeability € (¢=1). Since the electric field
E, in the central region of the empty guide is maximal for
the LSE,, (dominant) mode and essentially zero for the
LSE;, mode, we infer from perturbaticn theory that the
cutoff frequency of the first mode will decrease while that
of the second mode will remain essentially unaffected by
the proposed perturbation. Vartanian {1] has pointed out
several practical reasons for which permittivity changes
are preferable to cross-section modifications as long as
dielectric losses stay acceptably small. Therefore, this
paper deals exclusively with dielectric relative permittivity
perturbations (e = e(x)) for bandwidth (constraint and un-
constraint) optimization purposes.

(6)

W, T Wy

III. NUMERICAL SOLUTION OF THE WAVE
EQUATION AT CUTOFF AND BANDWIDTH
OPTIMIZATION

Consider a waveguide loaded with M dielectric slabs of
width ¢, relative permittivity ¢, and relative permeability
unity, as shown in Fig. 1.
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In this section, we describe alternative numerical
methods used for finding the cutoff frequencies of the
above-mentioned configuration: the field-matching
method [2] and the moment method [5], [11]. We shall
describe afterwards the optimization method used to ob-
tain the optimal bandwidth.

A. The Field-Matching and Moment Methods

In the field-matching method, the cutoff frequencies of
the LSE modes are given by the roots of the element
Fi5(w) of the following matrix [3]:

M
F=1]IT ®)
i=1
where
cos p.c sin p. ¢ ;

Zz[ .I)I I ( pl l)/pl (9)

—p; sin p,c, COs p,¢;

2

pr=ed—(ZE). (10)

The cutoff frequencies of the LSM modes could be found
in a similar manner [3].

In the moment method (Galerkin choice), the desired
cutoff frequencies are given by setting the following de-
terminant to zero:

det {[/;]—k3[ m;]}=0 (11)

where
l,j=j(;aLf,'j;-dx (12)
m,.j=j:Mf, f dx (13)

For the LSE modes

d? 7 \2
L=—;;+(m7) (14)
M=e(x) (15)

and f(x) are prescribed basis functions satisfying, sep-
arately, the required boundary conditions.

The cutoff frequencies of the LSM modes could be
found in a similar manner.

B. Convergence of the Moment Method

The degree of accuracy of the moment method is dif-
ficult to ascertain. In order to determine its convergence
properties, we have compared it with the field-matching
method (henceforth the “exact solution™) which, whenever
applicable, may yield solutions to any desired accuracy.

The convergence properties of the moment solution
were tested for a single centered slab configuration. Ap-
propriate basis functions were chosen for each mode,
taking advantage of the relevant symmetry properties. We
have considered harmonic basis functions, which coincide
with the eigenfunctions of the modes propagating in the
empty waveguide as well as the polynomial basis functions
shown in Table .
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TABLE1
HARMONIC AND POLYNOMIAL BASIS FUNCTIONS

Harmonic Set Polynomial Set

ain 1%x (1 = 1,3,5,...) | (2x=1)?1 =1, (1 = 1,2,3,...)

ISE sin dmx (L = 2,4,6,...) ] (2x1)((2x-1)2 o 1), (1 = 1,2,3,...)

1 (1 =1)

~

cos imx (1 = 0,2,h,...
24 2
(2x-1)7" - 1({2x-1)%, {1 = 2,3,4,...)

HARMONIC ] l POLYNOMIAL
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Fig. 2. Convergence error for harmonic and polynomial sets versus
rank.

Let us denote the “exact” eigenvalue by w,, the moment
solution of rank N by w, y, and the error measure by

wc,N - wc

(16)

e=log

The Galerkin choice guarantees convergence from above
(w,, x> w,) for symmetric, positive definite operators [12].
The convergence error for harmonic and polynomial sets
of functions is described for the four modes of interest in
Figs. 2(a)-(h) as a function of the rank N for b=0.50,
¢=0.10, and with the slab’s relative permittivity (¢) as
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parameter. Convergence errors have also been calculated
for other parametric values, leading to similar conclusions.

For the LSM,, mode, especially at higher values of e,
the moment solution has exhibited poor convergence
properties, even with N=50 for the harmonic set. The
poor convergence of the procedure for LSM modes has
been traced back to the discontinuous nature of do,,;/dx
at the slab’s boundaries where ¢,,(x) represents the x
dependence of the appropriate electric vector potential.
The continuous basis could not describe accurately the
discontinuous region. This difficulty was overcome by
adding another set of functions which facilitated an
efficient and simple description of the discontinuity.

Define two sets of harmonic basis functions as follows
(a=1):

e(x)=cosimx, xo<x<x5 i=02,4,--- (17)
sinir((x—x)/(x,— %)), x<x<x,

hy(x)= i=13,5--- (18

() 0, Xp<X<X,X<X<X3 (18)
i=1,3,5,---.

The basis functions ¢;(x) are, as before, the eigenfunctions
of the LSM mode in the empty waveguide, and the basis
functions #;(x) are the eigenfunctions of the LSE mode in
a waveguide stretching from x, to x, (Fig. 1). The deriva-
tives of A;(x) and ¢,(x) have discontinuities at the same
points. It may be anticipated that the following hybrid
basis would improve the convergence substantially:

fhi=epfh=hyfi=ey fu=hs - (19)

A similar double set of polynomial basis functions has
also been considered (a=1):

1, i=1

(x)= ! 20
e’(X) {52’—1‘&27 i=273’4".. ( )
0, XoSx<x, x,<x<xy, =123,
h(x)= -
¢¥F—1, X Sx<xy i=1,2,3,---
(21)
where
g_x1+x2 I
and
§
E= P
27X
and the hybrid basis
f1=el’f2=e2’f3=h1>f4=e3’f5=h2’f6=e4"“ (22)

has been tested. The convergence error for the new
harmonic and polynomial sets is given in Figs. 2(i) and ()
as a function of the rank with »=0.50, ¢=0.10, and € as
parameter.

The following conclusions can be drawn from the con-
vergence analysis.
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1) The polynomial set is found to be generally inferior
to the harmonic basis in accuracy, rate of convergence,
simplicity, and efficiency of the computation.

2) For given ¢ and N, the error increases as € and/or
(mm / b)* + B? increase, for all modes.

3) A considerable improvement of the convergence rate
for LSM modes is achieved, especially for higher ¢, via the
use of a hybrid basis possessing appropriate derivative
discontinuities.

C. The Optimization Method

The bandwidth function BW(b,e(x)) is calculated
numerically. If the (constraint or unconstraint) extremum
of this function is to be found, an optimization scheme is
preferred which does not require the numerical computa-
tion of the derivative. The Powell [6] the Nelder-Mead [7]
algorithms were used and found quite satisfactory. The
former has generally exhibited better convergence proper-
ties. In either case, we have obtained faster convergence
by optimizing BW? rather than BW.

IV. DISCUSSION AND INTERPRETATION
OF THE RESULTS

A. Single Dielectric Slab

According to perturbation theory (Section II), insertion
of a dielectric slab in a rectangular waveguide may im-
prove its bandwidth. In this section, the influence of the
guide’s geometry and dielectric slab loading on the cutoff
frequency ratios of the relevant modes and consequently
on the bandwidth is investigated. Optimal bandwidth
solutions are found for the centrally loaded single-slab
configuration. For convenience, and without loss of gener-
ality, a=1. All computations in this chapter were carried
out via both mode-matching and moment techniques.

Graphs of the ratio of the cutoff frequency of a cen-
trally loaded guide to that of an empty one (w./w,) are
given in Figs. 3(a)~(d) for LSEgy, LSEy,, LSE;,, and
LSM,, modes as a function of the slab’s width ¢ with the
relative permittivity e as parameter, and guide heights b of
0.50 and 0.40. As can be anticipated, the cutoff frequen-
cies of the LSE,, and LSEj, modes for the loaded and
empty waveguides do not depend on b, while those of the
LSE,; and LSM;, do.

It can be seen from the graphs that, for given € and c,
the influence of the slab’s presence is felt, in decreasing
order of importance, by the modes LSE,,, LSE;;, LSM,,,
and LSEg,. The cutoff frequencies of all the modes de-
crease for increasing € and ¢ and increase for increasing b.

Graphs of the cutoff frequency ratios (w,/w,) depen-
dence on ¢ are given in Figs. 4(a)-(c) for LSE,,, LSE,,,
and LSM,; modes.

The following conclusions can be drawn. For all three
modes, CFR increases and approaches an asymptotic
value, for given ¢ and b, as e increases. The slab’s width ¢
corresponding to an extremum in bandwidth decreases,
for a given b, as e increases. For given € and b, CFR
possesses a maximum for LSEy, and LSM;, modes and a
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Fig. 3. Ratio of the cutoff frequency of a centrally loaded guide to that
of an empty one versus the slab’s width.
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Fig. 4. Cutoff frequency ratio versus slab’s width.

minimum for LSE,; modes. For LSE,; and LSM,, modes,
CFR decreases, given € and ¢, as b increases.

It can be seen from Figs. 4(a) and 4(b), that for a given
b, an increase in € increases the maximum CFR for the
LSE,;, mode and decreases the minimum CFR for the
LSE,, mode. The optimal bandwidth in the guide
(@5q/wz)opt could therefore depend on both. Fig. 5(a)
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contains a graphical superposition describing the CFR
variation of both modes as a function of ¢, i.e., the BW
dependence on ¢, for b=0.40 and e=2, 3, 4, and 25.

The graph obviates the fact that for €< 3, the guide’s
bandwidth is determined by the LSEj, mode since
CFR(LSE;;) > CFR(LSEy,) (for e¢=2, BW_ , =
CFR,,(LSEy;)=2.32 at ¢=0.26). For ¢>3, the band-
width is determined by the LSE,, mode for 0 <c¢ < ¢’ and
¢” <c¢<1, since in these ranges CFR(LSE,) >
CFR(LSEy,), and by the LSE,;; mode for ¢’ <c <¢”, since
in this range the inequality changes sides, ¢’ and ¢” being
the crossover points of the CFR(LSE,) and CFR(LSE,))
curves. The bandwidth variation has, therefore, always
two peaks, the stronger of which determines BW,,, (for
e=4, BW =256 at ¢”=0.33). The maximum on the
right has been found consistently to be the highest.
For the intermediate relative permittivity e, = 3,
CFR,,, (LSE,,)=CFR_ (LSE,)=BW__ (for e=3, BW,

opt opt

=2.56 at ¢=0.22). Evidently, ¢, is a function of b. Figs.
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Fig. 6. Optimal bandwidth and optimal slab width versus relative
permittivity.

5(b) and (c) are similar to Fig. 5(a), but with »=0.50 and
0.20, respectively.

Let ¢ ,(b,€) denote the optimal slab width (e.g., in the
cited example, c,,(0.4,2)=0.26, ¢, (0.4,3)=0.22, and
cpi(0.4,4)=0.33). Graphs of the optimal bandwidth
BW,,. (corresponding to c,,) are given in Fig. 6(a) as a
function of € with b as parameter, while Fig. 6(b) de-
scribes the optimal slab width (c,,) as a function of € with
b as parameter.

Consider, for example, b =0.40. It could be seen readily
that in the range 1< e<3 where BW,, is determined by
the LSEy, mode, it increases from 2 to 2.56 while ¢,
decreases from 0.50 to 0.22. In the range e¢>3 where
BW, is determined by the LSE;, and LSE;; modes, it
remains fairly constant and equal to 2.56, while ¢, in-
creases at first and then reaches an asymptotic saturation
value ¢, =0.41. This behavior could be explained with
the aid of Fig. 5(a) where the optimal points have been
connected. It can be seen that, as ¢ increases from 1 to 3,
BW,, increases and c,, decreases. When ¢ becomes
larger than 3, BW,, remains essentially constant (BW =
2.56), and ¢, increases first and then reaches an asymp-
totic level at 0.41. The minimum value of ¢, is reached,
for a given b, when e=¢,,. ¢, increases when b decreases,
since CFR,(LSE,)) increases when b decreases (Fig.
4(b)), while CFR, (LSE,) is independent of b (Fig. 4(a)).

The parameter range b>0.50 is of little interest in the

411

TABLE 11
RESULTS OF THE OPTIMIZATION PROCESS FOR ASYMMETRICAL
SINGLE-SLAB AND SYMMETRICAL THREE-SLAB CONFIGURATIONS

—
Guide Preserived Search Finel Values of Remarks
Loading Parameters |Parameters| the Search Parsmeters
Asymmetrical eopt{€) = optimal
single-slab b, € e 4, o, = copt(c), i, =0 vigth for a single
e mes =1 2 2 central dielectric
3
slsb
Symmetrical
thrse— sEabs by €4 €, > 1, c, arbitrary .
51—55—1 € 2, or —— i
€, =t ey = copt(EB) ey * 0, e, arbitrary
C2 % %y
b =
" s 2T %M e, e e, > 0, &, erbitrary
— comlea] T 3|3 3
opt' 2
c, = BE 2
2 2
By T gy O3 7 copr,(eM)
32 - 0, €y arbitrary The mode of con-
vergence of the
or
search parameters
‘:3 " ey C3 = Copt(EH)
. < N bit depends on thelr
s e, + ¢, arbitra
" 33 2 ’ 2 i sterting values
v or
f2° %2 lewe z¢
372"y
eyt = Copt(im)
or Constreint:
e, = 0, e, arbitrary
3 3 €40 €y < By
ey = ey do, = copt(sn)

present context, since the bandwidth cannot be substan-
tially improved. For low € and b>>0.50, the subdominant
mode is the LSM,, (instead of LSE, for b <0.50).

B. Multidielectric Slabs

We saw in the preceding section that a centrally loaded
waveguide with a single dielectric slab possesses an opti-
mum bandwidth for a given relative permittivity or pre-
scribed height. The question arises whether or not added
dielectric slabs (of different relative permittivity and
width), and /or the alteration of structure symmetry, could
further improve the bandwidth.

The optimization program was run repeatedly for vari-
ous values of the prescribed parameters as well as initial
values of the search parameters. The optimum bandwidth
of an asymmetrical single slab and of a symmetrical
three-slab configuration were obtained. The relative per-
mittivity €(x) was ascribed an upper bound which we
denoted by ¢,,.

The results of the optimization process are summarized
in Table II. It was found that no improvement over the
single centrally loaded slab configuration can be achieved.
Indeed, the generalized configurations (Table II) have
always degenerated to this basic structure. This conclu-
sion is not unexpected.

C. Power Handling Capacity and Attenuation Constraints

The discussion in Section IV-A reveals the basic process
of bandwidth widening whereby a lowering of  and an
increase in ¢ are required. Unfortunately, the very same
process would diminish the power handling capacity of
the device and enhance the attenuation per unit length.
This section deals with the task of achieving an optimal
bandwidth (about some center frequency) constrained by



412

prescribed minimum power handling capacity and/or
prescribed maximum acceptable losses. Conversely, for a
desired and predetermined bandwidth, we may try to
maximize power handling capacity or minimize attenua-
tion.

The power carried along the guide by the dominant
mode is given by [2]

=1 arbi= %Y. 7 =___A; 3 (4.2 d
PZ—ERefOfO(EXH)azdxay 2 ogbP fo¢h(x) x

(23)

where 4 is an amplitude constant. The maximum power
flow is determined by the breakdown electric field
(Epq(x,w)), the guide’s geometrical dimensions (a,b), the
relative permittivity (), and the frequency (w). We assume
that breakdown occurs at the air—dielectric interface.

The power per unit length absorbed in the guide’s walls
due to their finite conductivity (o) is given by [2]

R

P==" [ [H HtdS (249)
s

where R, =V wpo/20 , H, is the magnetic field compo-

nent (assuming no losses) tangential to the walls, and the

integration ranges over the surface of the walls. If we

assume that the losses are small, perturbation theory

yields
ABR,, |[( d64,(0)\?  (dey(a) \?
P”_Z (dx)+(dx)b
a 5 [ doy(x) \?
w2 (B (L) |axl. @9
The attenuation constant will be given by [2]
ks 26
&= ZPZ . ( )

Let us define the normalized power handling capacity and
the normalized attenuation constant by

= Pry(w)
P @) e
_ (v

where the primed quantities refer to the unloaded wave-
guide of dimensions a=1 and 5=0.50 which has been
chosen (rather arbitrarily) for normalization purposes. Let
us define the nominal working frequencies by

W=V wd' wsd (29)
W=Vea, (30)

and set w=w’ for comparison purposes.
Graphs of P, and a, are given in Figs. 7(a) and (b) as
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Fig. 7. Normalized power handling capacity and normalized attenua-
tion constant versus relative permittivity.

a function of € with b as parameter and ¢ = ¢ (€, ).

It can be seen from Fig. 7 that, for a given €, P,
decreases with b (i.e., the power handling capacity de-
creases as the bandwidth increases). a, first decreases with
b (this will not constrain the bandwidth optimization
process) up to a certain b=5,, corresponding to e=¢,,
and then increases as b decreases. We may conclude that
the combined requirement of optimal bandwidth together
with a maximum power handling capacity and a mini-
mum attenuation constant leads to the most advantageous
choice: b=b,,, e=¢,, and ¢ = cy(€,,b,,) of the waveguide
parameters. An analysis made taking into consideration
dielectric losses left this conclusion unchanged.
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