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Bandwidth Optimization by Dielectric Loading

SHALOM HALEVY, SHALOM RAZ, AND HAIM CORY

Abstract—The knowm theory of dielectricafly loaded reetangdar wave-

@ides is combmed with appropriate optimization procedures to yield

optfmaf bandwidth design. ‘f’be ndrdmaf acceptable power handfing capac-

ity and/or the maximaf allowed losses are used as eonatrafnts. Mterna-

tively, power handfing capacity or 10SWSmay be considered as the desired

optimization targets. The numerical dekmoinatfon of the relevant cutoff
frequencies is carried out by the efffcieut mode-matefdng teehnique as well

as the more generafty appffcable moment solution. Alternative search
afgoritbma are used and compared. Results of the optimization proeeaa are
given a simple physical interpretation.

I. INTRODUCTION

T ‘HE DIELECTRIC loaded waveguide has long been

,recognized as an attractive propagation medium,

possessing desirable features such as substantially in-

creased bandwidth and power handling capacity. The

associated propagation features, particularly for stratified

loading, have been thoroughly investigated and are well

known [ 1]-[4].

A primary objective of this paper is to combine the

known theory of stratified loaded guides and the

associated numerical capability with appropriate optimi-

zation schemes. We present a procedure yielding optimal

bandwidth design with minimal power handling capacity

and/or maximal allowed losses as constraints. Alterna-

tively, power handling capacity or losses may be selected

as the desired optimization targets with, for example, the

bandwidth as a constraint.

The useful frequency band is, in principle, given by

u~ < u < u,~, where ti~ and w,~ denote the cutoff frequen-

cies of the first (dominant) mode (LSEO1 in the configura-

tion of Fig. 1), and the second (subdominant) mode

(LSEOZ, LSEII, or LSMII depending upon the waveguide

and loading parameters in the configuration of Fig. 1 [3]).

The numerical determination of the relevant cutoff

frequencies and field distribution is carried out by both

the classical and efficient (whenever applicable) mode-

matching technique [2] and by the more general moment

method [5]. The optimization sequence was carried out by
two alternative search algorithms suggested by [6] and [7],

of which the first has consistently been found to be more

efficient.
The bandwidth extension mechanisms are discussed

from the point of view of perturbation theory in Section

II. Perturbation arguments help clarify some of the basic

trends, e.g., the fact that maximal influence on the cutoff
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Fig. 1. Rectangular waveguide loaded with M dielectric slabs.

frequencies is obtained by dielectric loading of regions of

maximal (modal) electric fields while modes characterized

by vanishing electric fields in the loaded region remain

essentially unaffected.

The analytical and numerical aspects are described in

Section III. No difficulties are encountered in the applica-

tion of the mode-matching technique. A convergence dif-

ficulty arose in applying the moment solution to LSM

modes. This difficulty, traceable to the appearance of

discontinuities in the modal fields, was resolved by an

appropriate choice of hybrid basis.

The specific configuration of a single centrally situated

slab and its unconstraint optimization is discussed in

Section IV-A. In Section IV-B, the authors also address

the asymmetrical and multi-slab configurations (Fig. 1)

from the viewpoint of the role that the added parameters

(degrees of freedom) can play in the optimization process.

Section IV-C deals with the problem and conclusions of

constraint optimization. For reasons exhibited in Section

IV-B, only the symmetric single-slab configuration is dis-

cussed in this context.

II. THEORETICAL CONSIDERATIONS

Let us consider an infinitely long dielectrically loaded

rectangular waveguide having perfectly conducting walls.

It is assumed that the guide’s width a in the x direction, is

larger than or equal to its height b in they direction. It is

further assumed that the relative permittivity e is x depen-

dent only, and that the relative permeability p= 1. The

electromagnetic (EM) fields propagating in this guide

could be classified into LSE modes (EX = O) and LSM
modes (HX = O), which constitute a complete set.
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A. The LSE and LSIkf ikfodes

The electric and magnetic fields of the ith LSE mode

are derivable from a Hertz magnetic vector potential

given by [2], [8]

lTfiJ = @jki(x) cos ~ exp ( –j&z), m=0,1,2, ””. .

(1)

+~1(x) satisfies the following differential equation:

and boundary conditions

@hi(o) =I$hi(a)= o. (3)

Similar considerations apply for the LSM modes [2], [8].

B. &lode Classification and Bandwidth Definition

There is a double infinity of solutions for each mode

type, to be denoted as LSE~n and LSM~.. The index m

refers to the y dependence of the potential, while the

index n is related to the x domain eigenfunction having

the eigenvalue c+..: (u=,. > uC,~_ ,). These eigenvalues, i.e.,

tha cutoff frequencies, are found by setting ~ = O in the

differential equations of the modes, and solving the result-

ini~ equations by the numerical methods described in the

next paragraph. LSEO1 will retain its dominant mode role

throughout. From the properties of the Sturm–Liouville

operator [9], it appears that the eigenvalues of the

LSE~. (LSM~.) modes are lower than the eigenvalues of
the LSE~,.,(LSM~,.,) modes, if m = m’ and n < n’, or if

n‘= n’ and m <m’, or if m <m’ and n < n’. Therefore, the

modes “competing” for second place are LSE02, LSE11,

and LSM1,, and only these modes need to be considered

in the bandwidth optimization problem. The second-place

mode will be referred to as the “subdominant mode.”

We shall define the cutoff frequency ratio (CFR) as

follows :

CFR = uC/a~ (4)

where Ud is the cutoff frequency of the dominant (LSEO1)

mode, while tic is the cutoff frequency of any other mode.

The CFR of the subdominant mode will be termed band-

w,dth (BW).

BW=~. (5)

Alternative bandwidth definitions are possible, but the
above definition is the simplest and most usual one. It is

noted that for a waveguide completely filled with a homo-

geneous dielectric, the subdominant mode is the

LSE02(TE20) in the range O< b/a< 1/2, with BW= 2,

while in the range 1/2< b/a <1, the subdominant mode

is the LSMI ~(TEOl) with BW <2.

C. Bandwidth Improvement and the Perturbation iklethod

The tendencies of bandwidth improvement can be

studied by performing a small perturbation in the fully

loaded guide’s geometry and/or its loading, and calculat-
ingg the results bandwidth. In the 0< b/a < 1/2 range, we
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have either to lower the cutoff frequency of the LSEOI

mode or to raise the cutoff frequency of the LSE02 mode.

Clearly, the perturbation method could only hint at the

initial bandwidth response to the guide’s parameters varia-

tion.

Let us consider an infinitely long cylindrical waveguide

of cross section S with perfectly conducting walls, com-

pletely filled with a dielectric o~ relative permittivity c and

permeability p, and let (Eo, Ho) denlote the presumedly

known fields at cutoff (uCo).

If we perform a perturbation AS in the waveguide’s

cross section, we shall obtain the following approximate

expression for the relative bandwidth [10]:

where UC is the cutoff frequency in the perturbed config-

uration. Therefore, an inward perturbation will decrease

or increase the cutoff frequency if it is made at a location

where the electric or the magnetic fields, respectively, are

highest. An application of this effect for increasing the

bandwidth could be found in ridge waveguides,

If the perturbation is performed in the dielectric param-

eters, the following approximate expression for the

tive bandwidth [10] will be obtained:
rela-

(7)

where At and Ap are local changes in the relative permit-

tivity and permeability, respectively. Therefore, an in-

crease in c or p will decrease the cutoff frequency. An

application of this effect for increasing the bandwidth has

been proposed in [1] and [3]. Let us consider a centrally

loaded waveguide with a thin dielectric slab of width c

(c<<a) and permeability c (c2 1). Since the electric field

~. in the central region of the empty guide is maximal for

the LSEol (dominant) mode and essentially zero for the

LSEOZ mode, we infer from perturbaticm theory that the

cutoff frequency of the first mode will decrease while that

of the second mode will remain essentiidly unaffected by

the proposed perturbation, Vartanian [11] has pointed out

several practical reasons for which permittivity changes

are preferable to cross-section modifications as long as

dielectric losses stay acceptably small. Therefore, this

paper deals exclusively with dielectric relative permittivity

perturbations (e= c(x)) for bandwidth (constraint and un-

constraint) optimization purposes.

HI. NUMERICAL SOLUTION CJFTHE WAVE

EQUATION AT CUTOFF AND BANDWIDTH

OPTIMIZATION

Consider a waveguide loaded with M dielectric slabs of

width c,, relative permittivity q, and relative permeability

unity, as shown in Fig. 1.
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In this section, we describe alternative numerical

methods used for finding the cutoff frequencies of the

above-mentioned configuration: the field-matching

method [2] and the moment method [5], [11], We shall

describe afterwards the optimization method used to ob-

tain the optimal bandwidth.

A. The Field-A4atching and Moment A4ethodr

In the field-matching method, the cutoff frequencies of

the LSE modes are &en by the

F12(a) of the following matrix [3]:

F=C~
1-1

where

roots of the element

(8)

~=
[

Cosp, c, (SinplCz)/pj

–pi sin p, c, Cosp, Ci 1 (9)

()

rnT 2

p,?=c,k; – ~ . (lo)

The cutoff frequencies of the LSM modes could be found

in a similar manner [3].

In the moment method (Galerkin choice), the desired

cutoff frequencies are given by setting the following de-

terminant to zero:

det {[lij]–k~[miy]}=o (11)

where

J
I,j = aL~ .Jdx (12)

o

miJ=
J

“MA $ dx. (13)
o

For the LSE modes

L=-++(y)’ (14)

M=e(x) (15)

and &(x) are prescribed basis functions satisfying, sep-

arately, the required boundary conditions.

The cutoff frequencies of the LSM modes could be

found in a similar manner.

B. Convergence of the iWoment A4ethod

The degree of accuracy of the moment method is dif-

ficult to ascertain. In order to determine its convergence

properties, we have compared it with the field-matching

method (henceforth the “exact solution”) which, whenever

applicable, may yield solutions to any desired accuracy.
The convergence properties of the moment solution

were tested for a single centered slab configuration. Ap-

propriate basis functions were chosen for each mode,

taking advantage of the relevant symmetry properties. We

have considered harmonic basis functions, which coincide

with the eigenfunctions of the modes propagating in the

empty waveguide as well as the po~nomial basis functions

shown in Table I.

TABLE I

HARMONIC ANO POLYNOMIAL BASIS FUNCTIONS

Mode Harmnic Set POlyrlOmi&l set
——--- -—

2i
IS401, LSE11 sin i~x (i = 1,3,5 . ...) (2x-1) -1, (i = 1,2,3, ...) I

=E02
nin imx (i = 2,4,6,. ..) (2x-l )((2x-l)2i -1), (i = 1,2,3,. ,,)

1 (i = 1)

~%1
Cos ixx (i = o,2, h,...)

(2x-l)2i - i(2x-1)2, (i - 2,3,4, ...)

HARMCNIC I b ‘0,50 , c=O,1O POLYNOMIAL

. (a) LSEO1 (b) LSEOI

~ (c) LSE02 ~ (d) LSE,3* I

-5 I I , I ( I 1 I I 1 1 1 I , I , I I

02468a2 4 6 8

RANK (N)

HARMONIC I b .0.50 , c = 0.10 PaLYNCWAL

- (9) LSMII - (h) LSM II
~ 2.5 m 23

~:: ~-; ~-~:

-,o~
6 60 2 4 6 8

RANK (N)

Fig. 2. Convergence error for harmonic and polynomial sets versus
rank.

Let us denote the “exact” eigenvalue by UC, the moment

solution of rank N by CJC,~,and the error measure by

(dC, ~ — @c
e~loglo ~ .

c
(16)

The Galerkin choice guarantees convergence from above

(tiC,~ > COC)for symmetric, positive definite operators [12].

The convergence error for harmonic and polynomial sets

of functions is described for the four modes of interest in

Figs. 2(a)-(h) as a function of the rank N for b= 0.50,

c = 0.10, and with the slab’s relative permittivity (c) as
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parameter. Convergence errors have also been calculated

for other parametric values, leading to similar conclusions.

For the LSMI, mode, especially at higher values of K,

the moment solution has exhibited poor convergence

properties, even with N= 50 for the harmonic set. The

poor convergence of the procedure for LSM modes has

been traced back to the discontinuous nature of d@,i/dx

at the slab’s boundaries where @ei(x) represents the x

dependence of the appropriate electric vector potential.

The continuous basis could not describe accurately the

discontinuous region. This difficulty was overcome by

adding another set of functions which facilitated an

efficient and simple description of the discontinuity.

Define two sets of harmonic basis functions as follows

(a=l):

ei(x) = cos inx, xo<x<x~, i=0,2,4, -”” (17)

[

sini~((x–xl)/(x2 –xl)), X1< X<X2

h,(x)= i=l,3,5,. . .
o,

(18)
xoGx<x,, x~<x <x3

i=l,3,5, ”.”.

The basis functions ei(x) are, as before, the eigenfunctions

of the LSM mode in the empty waveguide, and the basis

functions hi(x) are the eigenfunctions of the LSE mode in

a waveguide stretching from xl to x2 (Fig. 1). me deriva-

tives of hi(x) and +=(x) have discontinuities at the same

pc~ints. It may be anticipated that the following hybrid

basis would improve the convergence substantially:

fl=eO, fz=h1,f3= ez, fa=h3, ””” . (19)

A similar double set of polynomial basis functions has

also been considered (a= 1):

( 1, i=l

‘i(x)= &2i–i~2, i=2,3,4, ”””
(20)

{

o, xo<x<xl, x~<x <x3,
h,(x)=

i=l,2,3,. ”.

(Zi– 1, X1< X< X2, i=l,2,3, ””.

(21)

where

g.*.l
X*+X2

and

,&=L
X2—X,

and the hybrid basis

fl=el,.f2= e2,.f3= hl>f4=e3>-f5 =h2?f6=e45””” (22)

hi~s been tested. The convergence error for the new
harmonic and polynomial sets is given in Figs. 2(i) and (j)

as a function of the rank with b =0.50, c = 0.10, and f as

p(irameter.

The following conclusions can be drawn from the con-

vergence analysis.
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1) The polynomial set is found to be generally inferior

to the harmonic basis in accuracy, rate of convergence,

simplicity, and efficiency of the computation.

2) For given c and N, the error increases as ~ and/or

(rnT/b)2 + /32 increase, for all modes.

3) A considerable improvement of the convergence rate

for LSM modes is achieved, especially for higher c, via the

use of a hybrid basis possessing appropriate derivative

discontinuities.

C. The Optimization &lethod

The bandwidth function BW(b, E(x)) is calculated

numerically. If the (constraint or unconstraint) extremum

of this function is to be found, an optimization scheme is

preferred which does not require the numerical computa-

tion of the derivative. The Powell [6] the Nelder-I!4ead [7]

algorithms were used and found quite satisfactory. The

former has generally exhibited better convergence proper-

ties. In either case, we have obtained falster convergence

by optimizing BW2 rather than BW.

IV. DISCUSSION N INTERPRETATION

OF ‘rHE Rl?SULTS

A. Single Dielectric Slab

According to perturbation theory (Section H), insertion

of a dielectric slab in a rectangular waveguide may im-

prove its bandwidth. In this section, the influence of the

guide’s geometry and dielectric slab loading on the cutoff

frequency ratios of the relevant modes and consequently

on the bandwidth is investigated. Optimal bandwidth

solutions are found for the centrally loaded single-slab

configuration. For convenience, and without loss of gener-

ality, a = 1. All computations in this ChaLpter were carried

out via both mode-matching and molrnent techniques.

Graphs of the ratio of the cutoff frequency of a cen-

trally loaded guide to that of an empty one (aC/tie) are

given in Figs. 3(a)–(d) for LSEOI, LSE02, LSE11, and

LSMl, modes as a function of the slab’s width c with the

relative permittivity c as parameter, and guide heights b of

0.50 and 0.40. As can be anticipated, the cutoff frequen-

cies of the LSEOI and LSE02 modes for the loaded and

empty waveguides do not depend on b, while those of the

LSEI, and LSMI1 do.

It can be seen from the graphs that, for given e and c,

the influence of the slab’s presence is felt, in decreasing

order of importance, by the modes I.SE,l ~, LSEO1, LSM11,

and LSE02. The cutoff frequencies of all the modes de-

crease for increasing ~ and c and increase for increasing b.

Graphs of the cutoff frequency ratios (aC/ad) depen-

dence on c are given in Figs. 4(a)–(c) for LSE02, LSE1 ~,

and LSM ~~ modes.
The following conclusions can be drawn. For all three

modes, CFR increases and approaches an asymptotic

value, for given c and b, as c increases. ‘The slab’s width c

corresponding to an extremum in bandwidth decreases,

for a given b, as c increases. For given c and b, CFR

possesses a maximum for LSE02 and LSMI, modes and a
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50

42
e
L
v

34

26

18
0 02 0,4 0.6

WIDTH (c)
, t 1 I

,,0-
WIOTH (C)

L(c) LSMT,

50 I

2

1

z

4

,6

80 02 04 06
WIOTH (C)

Fig. 4. Cutoff frequency ratio versus slab’s width.

minimum for LSEI, modes. For LSE1 ~ and LSMI ~ modes,

CFR decreases, given t- and c, as b increases.

It can be seen from Figs. 4(a) and 4(b), that jor a given

b, an increase in e increases the maximum CFR for the

LSE02 mode and decreases the minimum CFR for the

LSE1 , mode. The optimal bandwidth in the guide

(@,d/od)OP, could therefore depend on both. Fig. 5(a)

2.60
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Fig. 5. Bandwidth versus slab’s width.

contains a graphical superposition describing 1
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the CFR

variation of both modes as a function of c, i.e., the BW

dependence on c, for b= 0.40 and c = 2,3,4, and 25.

The graph obviates the fact that for c <3, the guide’s

bandwidth is determined by the LSEOZ mode since

CFR(LSEII) > CFR(LSEOZ) (for c = 2, BWOP, =

CF~.X(LSEOz) = 2.32 at c =0.26). For c >3, the band-
width is determined by the LSEOZ mode for 0< c < c’ and

C“<c <l> since in these ranges CFR(LSEl,) >
CFR(LSEOZ), and by the LSEI ~ mode for c’< c < c“, since

in this range the inequality changes sides, c’ and c“ being

the crossover points of the CFR(LSEOZ) and CFR(LSEl J

curves. The bandwidth variation has, therefore, always

two peaks, the stronger of which determines BWOPt (for

~ =4, BWOPt = 2.56 at c“ = 0.33). The maximum on the

right has been found consistently to be the highest.

For the intermediate relative permittivity CM = 3,
cF~,x(LSEo2) = CF~n(LSEl,) = BWoPt (for c = 3, BWOP,

=2.56 at c = 0.22). Evidently, ~~ is a function of b. Figs.
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Fig. 6. Optimal bandwidth and optimal slab width versus rel.. tive

permittivity.

5(b) and (c) are similar to Fig. 5(a), but with b =0.50 and

0.!20, respectively.

Let cOPt(b,c) denote the optimal slab width (e.g., in the

cited example, cOPt(0.4,2) = 0.26, cOPt(0.4,3) = 0.22, and

cCPt(0.4, 4) = 0.33), Graphs of the optimal bandwidth

B WOP, (corresponding to COPJare given in Fig. 6(a) as a

function of c with b as parameter, while Fig. 6(b) de-

scribes the optimal slab width (cOPt) as a function of e with

b as parameter.

Consider, for example, b =0.40. It could be seen readily

that in the range 1< c <3 where BWOPt is determined by

the LSEOZ mode, it increases from 2 to 2.56 while cOPt

decreases from 0.50 to 0.22. In the range e >3 where

BWOP, is determined by the LSEOZ and LSEl, modes, it

remains fairly constant and equal to 2.56, while cOPt in-

creases at first and then reaches an asymptotic saturation

value c.P, = 0.41. This behavior could be explained with

the aid of Fig. 5(a) where the optimal points have been

connected. It cart be seen that, as c increases from 1 to 3,
BWOP, increases and cOPt decreases. When c becomes

blrger than 3, BWOPt remains essentially constant (BWOPt =
2.56), and cOPtincreases first and then reaches an asymp-

totic level at 0.41. The minimum value of cOPtis reached,

for a given b, when c = ~~. CMincreases when b decreases,

since CF&lfl(LSEll) increases when b decreases (Fig.

4(b)), while CF~,X(LSEoz) is independent of b (Fig. 4(a)).

The parameter range b>O.50 is of little interest in the

TABLE H
RESULTS OFTHE OPTIMIZATION fiocMs FOR ASYMMETRICAL

SINGLE-SLAB m M’MMETRICAL THRBE-SLAB CONFIGURATIONS

.pmetY ical
in,gle-slab b, CZ

=. 3-1L

mmetr,..l
?,,, - ,l,bs b, .3

=,15=1
=.24 C3 = coy

(.3)

--1----
b, .2 = SH

!!
.—

*
C2= 2

,, b.—

~=T===ammeters the Search Pammetcrs

.2 + 1, .2 arbitrmry !!

%’ C2 0,

‘2 + 0’
S2 P.Fbitmry

.3> C3

I
C3+ 0, .3 nrbitruy

I

‘3 = EM, .3 = COP,(8M)

“2
+ 0, .2 arbitrwy me motie or con-

vergence or the
or

C3 ~ ~H. .3 - copt(cMl ,e~ch par~ter,

.iepen6s cm their
E3, C3 S2 + 1, C2 arbitrary

.t’drti.g value,
E2, C2 or

=.2=CM‘3
+2C2. C

C3 ODt ( %)
or I Constmlnt:

———

present context, since the bandwidth cannot be substan-

tially improved. For low ~ and b >0.50, the subdominant

mode is the LSh41, (instead of LSEOJ for b <0.50).

B. Multidielectric Slabs

We saw in the preceding section that a centrally loaded

waveguide with a single dielectric sla’b possesses an opti-

mum bandwidth for a given relative pennittivity or pre-

scribed height. The question arises wlhetlher or not added

dielectric slabs (of different relative pmmittivity and

width), and/or the alteration of structure symmetry, could

further improve the bandwidth.

The optimization program was run repeatedly for vari-

ous values of the prescribed parameters as well as initial

values of the search parameters. The optimum bandwidth

of an asymmetrical single dab and cd a symmetrical

three-slab configuration were obtained. The relative per-

mittivity t(x) was ascribed an upper lbound which we

denoted by CM.

The results of the optimization process are sumarized

in Table 11, It was found that no improvement over the

single centrally loaded slab configuratior~ can be achieved.

Indeed, the generalized configurations (Table H) have

always degenerated to this basic structure. This conclu-

sion is not unexpected.

C. Power Handling Capacity and A ttenuation Constraints

The discussion in Section IV-A reveals the basic process

of bandwidth widening whereby a lowering of b and an

increase in c are required. Unfortunately, the very same

process would diminish the power handling capacity of

the device and enhance the attenuation per unit length.

This section deals with the task of achieving an optimal

bandwidth (about some center frequency) constrained by
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prescribed minimum power handling capacity and/or

prescribed maximum acceptable losses. Conversely, for a

desired and predetermined bandwidth, we may try to

maximize power handling capacity or minimize attenua-

tion.

The power carried along the guide by the dominant

mode is given by [2]

Pz=~Re JaJb(Ex ii*).iiz dxc-$ = +J@p~&x)dx
00

(23)

where A is an amplitude constant. The maximum power

flow is determined by the breakdown electtic field

(E~d(x, w)), the guide’s geometrical dimensions (a, b), the
relative permittivity (~), and the frequency (a). We assume

that breakdown occurs at the air-dielectric interface.

The power per unit length absorbed in the guide’s walls

due to their finite conductivity (u) is given by [2]

(24)

where R. = _, ~ is the magnetic field compo-
nent (assuming no losses) tangential to the walls, and the

integration ranges over the surface of the walls. If we

assume that the losses are small, perturbation theory

yields

f’c=*{[(w)’+(d”;:))’]b

The attenuation constant will be given by [2]

(26)

Let us define the normalized power handling capacity and

the normalized attenuation constant by

— Clc ((d)

a’=a: ((4)’)

(27)

(28)

where the primed quantities refer to the unloaded wave-

guide of dimensions a= 1 and b= 0.50 which has been

chosen (rather arbitrarily) for normalization purposes. Let

us define the nominal working frequencies by

u== (29)

d= q= (30)

and set u = ~’ for comparison purposes.

Graphs of ~~= and tiC are given in Figs. 7(a) and (b) as
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Fig. 7. Normalized power handling capacity and normalized
tion constant versus relative perrnittivity.

attenna-

a function of ● with b as parameter and c = cOPt(c,b).

It can be seen from Fig. 7 that, for a given c, ~~=

decreases with b (i.e., the power handling capacity de-

creases as the bandwidth increases). &Cfirst decreases with

b (this will not constrain the bandwidth optimization

process) up to a certain b = bn corresponding to c = 6W,

and then increases as b decreases. We may conclude that

the combined requirement of optimal bandwidth together

with a maximum power handling capacity and a minim-

um attenuation constant leads to the most advantageous

choice: b = b~, c = cm, and c = cOPt(en,b~) of the waveguide

parameters, An analysis made taking into consideration

dielectric losses left this conclusion unchanged.
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